Recent Progress on Seismic Isolation and Energy Dissipation of Structures at NCREE

Kuo-Chun Chang

Seismic Design Strategies

Triangular Added Damping and Stiffness **NARLabs** (TADAS) Devices (Prof. K.C. Tsai since 1990's)

<u>Fubong Building in Nanjing East Road</u> 富邦南京東路辦公大樓 (2002)

採用三角形鋼板消能裝置

Using Steel Damping and Stiffness TADAS

陳水心土木結構技師事務所

Buildings with Steel Panel Dampers

Buildings with Steel Panel Dampersabs

Seismic Design and Tests of Joint in the Buckling Restrained K-Braced RC Frame

Applications of Weled End Slot BRBsbs

- 7 fabricators licensed in Taiwan
- More than 5,000 WES-BRBs installed in more than 50 buildings
- Grayson Engineering in NZ is licensed
 - Reliable unbonding mechanism
 Excellent seismic performance
 - Excellent seismic performance
 - Cost-effective fabrication
 - Compact and stable end connection

St Mary of the Angels Church

St. Mary of the Angels ChurchARLabs Wellington

2. Update the 12 x12 stiffness matrix (Kt) via static condensation

Viscoelastic Damper (Prof. KC Chyang since 1989)

1991 Effect of ambient temperature

Chang K.C, Soong TT, Oh ST, Lai ML

1998

2001

懸吊式屋頂加裝黏彈性阻尼器之實例

Modal strain energy method _{張國鎮、蔡孟豪、李森柟、陳長佑}

1993 Design procedure for damped structures

Chang KC, Soong TT, Lai ML, Nielsen E J

2003

High mode effect of buildings with viscoelastic dampers

Chang, K.C, Lin YY, Tsai MH, Hwang, JS

Present

t Full-scale viscoelastic dampers beyond design deformation

張國鎮、汪向榮、游忠翰、邱宜甄

15

Example of Application

VE dampers are often designed to remain intact (< 300% ~ 400% shear strain) under design basis shaking

What is actual performance, or any damage under...

Maximum considered or stronger ground shaking

Aftershock

Department of Civil Engineering National Taiwan University

Test Results

Department of Civil Engineering National Taiwan University

Viscous Damper (1997~)

1997

Displacement based design procedure

Chang KC, Lin YY, Chen CY

2000 Seismic retrofit of existing building

Chang KC, Hwang JS, Wang SJ, Huang YN, Chen JF

2009 Mitigation of micro vibration

Chang KC, Lin TK, Chen CC, Lin CC

Present Smart Nanofluid Damper

張國鎮、游忠翰、葉方耀、汪向榮、陳宗珷

Properties of Nanofluid Damper

For seismically isolated buildings

Velocity (mm/sec)

For bridges

Velocity (mm/sec)

Full-Scale Nanofluid Damper Test

22

Seismic Isolation System (~1994)

1994
2004First seismically isolated bridge
in Taiwan: design & performance2004
and Chang, K.C., Hwang, J.S., Yeh, M.H., and Chen, C.C.Seismically isolated bridge under
near-fault earthquake
KC Chang, J Shen, MH Tsai, GC Lee.

張國鎮、汪向榮、李柏翰、江春琴、林孟慧、洪瑩真

Present Building mass damper design

張國鎮、汪向榮、李柏翰、區瑋磯、 簡亭宜、陳穎萱、莊韓竹、郭世璞

Sloped Rolling-type Seismic Isolator

Chang, KC, Wang RJ, Ou YC, Lee GC, Wang SJ, Lin WC, Yu CH

bridge with rolling

2003~

Motivation of Sloped Rolling-type Seismic Isolators

Sloped Rolling-type Seismic Isolators

Generalized Equations of Motion

Hysteretic Model (Features)

Experimental & Numerical Results

Seismic Periodic Foundation (Joint Research with

Houston University)

Structure with conventional base isolation

Structure with periodic foundation

Basic Concept

Different types of Phononic Crystal developed in solid-state-physics

Wave Propagation

Wave propagation with frequency within the frequency band gap

Wave propagation with frequency outside of the frequency band gap

Frequency Band Gaps

Applied to Civil Engineering Field

Critical facilities

Parametric Study

1D Periodic Foundation

- Rubber material properties (Young's modulus, density, and Poisson's ratio)
- Concrete material properties (Young's modulus, density, and Poisson's ratio)
- Geometric properties (Rubberto-concrete thickness ratio)
- Cross section sizes
- Number of unit cell
- Combined unit cells
- Damping

3D Periodic Foundation

- Material properties (Young's modulus, density, and Poisson's ratio)
- Geometric properties (Filling ratio)
- Number of unit cell in horizontal direction
- Number of layers in vertical direction
- Damping

Design of Specimen with 1D Periodic Foundation

Frequency response function (FRF)

 $FRF = 20\log(\delta_{out} / \delta_{inp})$

where:

 δ_{out} = amplitude of output disp δ_{inp} = amplitude of input disp

If FRF = -20, the vibration response is reduced to 10%.

Designed periodic foundation unit cell

Theoretical frequency band gap

Fabrication of 1D Periodic Foundation

Construction of superstructure

Casting of concrete layers

Resin solution and polyurethane glue

Construction of 1D periodic foundation

Design of Specimen with 3D Periodic Foundation

Designed structural system Transverse wave (S-Wave) 150 Roof of superstructure 1750 kg additional mass Top of periodic foundation point A 100 uniformly distributed on the roof Top of periodic foundation point B Top of periodic foundation point C 50 FRF (db) 8500 kg additional mass -50 uniformly distributed -100 on the floor -150 10 20 30 0 40 50 Frequency (Hz) Longitudinal wave (P-Wave) 150 Roof of superstructure Top PF point A Top of periodic foundation point A 100 Top of periodic foundation point B Top of periodic foundation point C Top PF point B 50 Top PF point C FRF (db) 0 -50 **Unit cell** 36.4 cm RC -100 **Polyurethane** -150 10 20 30 40 50 0 36.4 cm 36.4 cm 36 Frequency (Hz)

Fabrication of 3D Periodic Foundation

Casting of concrete cores

Construction of 3D periodic foundation

Resin solution and polyurethane glue

Shaking Table Test Cases

RC foundation only

RC foundation + structure system

1D periodic foundation only

3D periodic foundation only

1D periodic foundation + structure system

3D periodic foundation + structure system

Examples of Test Results – 1D Periodic Foundation

Horizontal Shaking

- PGA at shake table is 0.4g
- Main frequency content of each earthquake is inside frequency band gap of 1D periodic foundation

Example of Test Results – 3D Periodic Foundation

Horizontal Shaking

- PGA at shake table is 0.4g
- Main frequency content of each earthquake is inside frequency band gaps of 3D periodic foundation

Future Study

Periodic Barrier

Thank You for Your Attention!

43